Our Blog

Fast microfluidic temperature control during high resolution live cell imaging

(Lab on Chip, 2011)

Summary | One major advantage of using genetically tractable model organisms such as the fission yeastSchizosaccharomyces pombe is the ability to construct temperature-sensitive mutations in a gene. The resulting gene product or protein behaves as wildtype at permissive temperatures. At non-permissive or restrictive temperatures the protein becomes unstable and some or all of its functions are abrogated. The protein regains its function when returning to a permissive temperature. In principle, temperature-sensitive mutation enables precise temporal control ofprotein activity when coupled to a fast temperature controller. Current commercial temperature control devices do not have fast switching capability over a wide range of temperatures, making repeated temperature changes impossible or impractical at the cellular timescale of seconds or minutes. Microfabrication using soft-lithography is emerging as a powerful tool for cell biological research. We present here a simple disposable polydimethylsiloxane (PDMS) based microfluidic device capable of reversibly switching between 5 °C and 45 °C in less than 10 s. This device allows high-resolution live cell imaging with an oil immersion objective lens. We demonstrate the utility of this device for studying microtubule dynamics throughout the cell cycle.

LEARN MORE  | Fast microfluidic temperature control for high resolution live cell imaging

CherryTemp thermal stage

 The World Fastest
temperature controller for live cell imaging

LEARN MORE

CherryTemp thermal stage

Discover the CherryTemp Heater Cooler

Ultra-fast shifts and temperature accuracy at the sample level

Learn more
Tags:

This is a unique website which will require a more modern browser to work! Please upgrade today!