Temperature control for microtubules and cell division studies in fission yeast


We developed a temperature controller that meets cell biology studies requirements. It reaches below ambient temperatures for efficient microtubules depolymerization or endocytosis arrest, it reaches dynamic biology properties by shifting from 5 to 45C in 10 seconds and thus prevents gradient formation inside the sample, it uses electronic control for steady temperature control and microfluidic technology to prevent fluid-flow shear stress on biological samples, it fits on any microscope setting.

Data presented here have been published by Velve-Casquillas et al., 2010 in Lab on a Chip.

S. pombe fission yeast temperature control for live cell imaging

S. pombe fission yeast temperature control for live cell imaging


The use of fission yeast temperature-sensitive mutants has contributed to the discovery of new genes involved in yeast biology. They also have been used to gain better understanding in essential genes function. Indeed, essential genes have critical role and mutations in those genes lead to lethal phenotypes, thus preventing further insights on their actions. (Ben Aroya et al., 2010).

Temperature sensitive mutations are often missense mutations. Mutated proteins retain their functionality at low, permissive, temperature but at higher, restrictive temperature, they become inactive. Fission yeast biology is intrinsically sensitive to temperature. Furthermore, at low temperatures microtubules depolymerize. Here, we present the validation of CherryTemp use for efficient cytoskeleton studies and cell cycle phenotype analysis.

Material and methods

CherryTemp temperature controller device

Our PDMS chip is composed of microchannels allowing the circulation of thermalized fluid. The chip is connected to Peltier devices set at two different hot/cold temperatures making possible to quickly change from low to high temperature. Our chip is mounted on a thin glass coverslip,that comes on top of the biological sample, spacers can be used depending on sample thickness. In our system, the fluid is never in contact with the sample thus preventing any shear stress

 Cell imaging and microscopy

Microtubule depolymerization experiments were performed on cdc25-22 expressing GFP-Atb2 tubulin. Mitotic spindle experiments were done using temperature sensitive cut7-24ts expressing GFP-Atb2. Images were acquired using a Yokogawa CSU-10 spinning disc scan head on a Nikon TE2000e inverted microscope. 3D imaging was done using a 100/1.45 NA objective, Metamorph 7.5 software for microscope and Hamamatsu ORCA-AG-CCD camera control.


 Reversible ultra-fast cold-induced microtubules depolymerization

temperature-control-microcopy-fission yeastTemperature-control-microscopy-BC To validate the efficacy of CherryTemp, we used GFP-Atb2 tubulin expressing yeast and follow fluorescence in vivo. At 22C, microtubules exhibit a typical elongated shape (Fig1A). At 16C, we could already quantify a decrease in microtubule polymer mass (Fig1B), and we observed a complete depolymerization when cells were at 6C (Fig1A and 1B) with a loss of microtubule-associated fluorescence signal (Fig1A) and an increase in cytoplasmic-associated fluorescence (Fig1C). This suggests that tubulin dimers were released from the microtubules and move to the pool of free-tubulin dimers. We found that the time to reach full depolymerization was cell-size dependent. This process was reversible, and microtubules repolymerize when we shifted back the temperature from 6C to 22C. Using our temperature controller, we could efficiently monitor cold-induced microtubule depolymerization and re-polymerization while at the microscope stage.




Reversible ultra-fast heat-induced mitosis phenotype

Temperature-control-microscopy-fission-yeastWe next wanted to validate the induction of temperature-sensitive mutant phenotype using our device. To this aim, we used Cut7-25ts expressing GFP-Atb2 yeast. Cut7 is a kinesin protein, involved in mitotic spindle formation. At restrictive temperature Cut7-25ts mutant do not form bipolar elongated spindle. At permissive temperature (22C) bipolar spindle is correctly formed and visible with GFP-Atb2 protein (Fig 2A and B). Few minutes after we shifted to 35C, the restrictive temperature, the bipolar spindle retracted and adopted a monopolar shape (Fig2B), this was characterized by a shortening in spindle length (Fig2C). When we shifted the temperature back to permissive level, we could revert the spindle phenotype (Fig2B) and retrieve original spindle length after a few minutes (Fig2C).


We developed and validated an ultra-fast temperature controller, fitted for live-cell and microscope imaging requirements.

Fast and reversible

CherryTemp enables scientists to shift from 5 to 45C in 10 seconds. This is possible thanks to the small length of our microfluidic chip and electronic control of temperature. Existing temperature controllers (incubation box, objective heater system, microscope stages) requires several minutes to switch temperature or generate strong thermal-gradient (>3C). Yet, it is very important to reach a fast temperature switch in order to prevent a thermal gradient formation on the sample and thus to cancel any possible temperature gradient generated artifacts. Because the temperature-switch is very quick, we could induce and revert cut7-25ts phenotype in minutes and test for how long protein inactivity can be maintained before we rescue the phenotype.

 Below ambient

The device we developed allows biologists to test below ambient cellular processes with no shear stress on the cell. We showed that microtubules depolymerization and repolymerization was efficient using CherryTemp. Subjecting a sample to cold temperature can also be necessary to perform high-resolution imaging. It is also well know that endocytosis is blocked at 19C and all vesicular transport is blocked below 15C, making CherryTemp perfectly suitable for this field of interest.


G. Velve Casquillas, C. Fu, M Le Berre, J. Cramer, S. Meance, A. Plecis, D. Baigl, JJ. Greffet, Y. Chen, M. Piel and PT. Tran Fast microfluidic temperature control for high resolution live cell imaging, Lab on a chip 2010

S. Ben-Aroya, X. Pan, JD. Boeke, and P. Hieter, Making temperature-sensitive mutants, Methods Enzymol. 2010

CherryTemp is the fastest temperature control in the 5-45°C range

Learn more !


CherryTemp is adapted to all types of live cells including S. pombe and C. elegans

Work with any of live cell !


CherryTemp is easy to use so that you focus on your research, not the instrument

 Learn more !

S. pombe

See another example of temperature control with thermosensitive mutants

Application note

CherryTemp heater/cooler for live-cell imaging

CherryTemp reaches such performance thanks to breaking edge microfluidics.

And thanks to a lot of work from our team to make sure Cherry Temp integrates seemlessly in your microscope set up.

Dynamic & fast : 10 seconds temperature shifts

Stable & Precise : Long term stability

Discover the C. elegans heater/cooler

This is a unique website which will require a more modern browser to work! Please upgrade today!