Scientific notes

Rebuilding the Vascular Network: In vivo and in vitro Approaches (Meng et al, 2021)

Introduction

The vascular network carries the transportation of materials and nutrients as the fluid delivery mechanism of the human body. Tissue engineering research, therefore, focuses primarily on the forming of functional vascular networks. The author presents in this regard, with the in vivo and in vitro-angiogenesis strategies and potential clinical applications, the latest evolution of the vascular network including the histological and cellular characteristics.

Tissue engineering is intended for the treatment of physiological and medical problems using engineering methods. Its principal objective is to facilitate tissue transplantation or organ transplantation and basic research to construct viable tissues in vitro modeling. A difficulty now is how to produce a significant amount of viable tissue (>1 cm3). The main challenge in new tissues is at present not creating a vascularized in vitro network capable of producing oxygen and nutrients, resulting in rapid necrotization of the core areas of the tissue generated without vascularisation.

The authors first presented the basic features of the body’s blood vessels and angiogenesis in vivo process outlined existing approaches to build blood vessels in vitro and in vivo and concentrated on comparing the roles, uses, and benefits of building various kinds of blood vessels. Finally, there was a discussion of the challenges and opportunities in this sector.

How to culture vascularized & immunocompetent 3D models in a standard Multiwell

Abstract

The authors state, “As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications, and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.”

References

Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol. 2021 Apr 21;9:639299. DOI: 10.3389/fcell.2021.639299. PMID: 33968926; PMCID: PMC8097043.

Related Posts

3d-cell-culture-Microfluidic-3D-Endothelium-on-a-Chip
A Microfluidic 3D Endothelium-on-a-Chip Model to Study Transendot...
Introduction Microfluidic 3D Endothelium-on-a-Chip – The endothelium is a thin membrane that lines the heart and blood vessels. Endothelia...
Read more
3d-cell-culture-intestinal-anatomy-histology
Intestinal Biopsies Beyond Histological Diagnosis: Ex-vivo Cultur...
Intestine: Overview, Histology and Pathology The intestine is the largest part of the alimentary canal, which is part of the gastrointestina...
Read more
Nanoscopy to improve drug screening and liver fenestrations...
Introduction Drug induced liver injury (DILI)is one of the major reasons of drug attrition and it mainly occurs because of preclinical trial...
Read more

get in touch

Get the best insights about Cherry Biotech by Email Let’s stay in touch!
As part of our commercial prospecting, we may need to process your personal data. For more information, please consult our Privacy Policy