Scientific notes

Imaging of mitochondria positioning on microtubule using fast temperature regulation

Abstract of mmb1p Binds Mitochondria to Dynamic Microtubules

 Mitochondria form a dynamic tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants?

Video extracted from the publication. 

How to culture vascularized & immunocompetent 3D models in a standard Multiwell

References

https://www.sciencedirect.com/science/article/pii/S0960982211007822Chuanhai Fu, Deeptee Jain, Judite Costa, Guilhem Velve-Casquillas, Phong T. Tran, mmb1p Binds Mitochondria to Dynamic Microtubules, Current Biology, Volume 21, Issue 17, 2011, Pages 1431-1439,

FAQ

The proper movement and distribution of mitochondria are considered critical. This importance is due to their localized function within the cell. These functions are necessary for cell metabolism, growth, and survival. In mammalian cells, the mechanisms for positioning mitochondria appear to be dependent on the microtubule cytoskeleton. This network is used to distribute the mitochondria. The mitochondria are carried as cargos by specific motors. These motors are identified as kinesin or dynein. They transport the mitochondria along the microtubule network, ensuring they are distributed correctly to support their localized functions.

An interesting point is raised regarding the timescales of the components involved. The dynamics of the microtubules themselves occur very quickly. This timescale is reported to be in seconds. In contrast, the distribution of the mitochondria, which uses the microtubules, happens much more slowly. The timescale for mitochondria distribution is reported to be in minutes. This difference presents a challenge. A question is posed about how the cell manages to couple these two different time constants. How the rapid, seconds-long dynamics of the microtubules are coupled to the slower, minutes-long process of distributing mitochondria is a key question.

Related Posts

Table comparing 3D liver cell models and their best uses. Rows: HepG2 spheroids: high scalability/HTS-ready, greater structural resistance, shift to quiescent tissue-like state; optimal for early HTS (acute cytotoxicity). HepaRG spheroids: high, stable CYP activity with robust induction; metabolically superior to HepG2; optimal for early–mid HTS (metabolism/DDI screening). PHH spheroids: gold-standard metabolic fidelity and weeks-long functional longevity; best correlation with in vivo CYP induction; optimal for late preclinical de-risking (chronic DILI, MoA).
From 2D to 3D: Restoring in vitro liver models functions...
In our previous article, we outlined the main in vitro liver models, immortalized cell lines such as HepG2 and HepaRG, alongside primary hep...
Read more
Diagram of a triple-negative breast cancer cell showing absence of ER, PR, and HER2 receptors, representing the defining features of TNBC and its lack of conventional therapeutic targets.
Triple-Negative Breast Cancer and the Application of Breast Cance...
Triple-negative breast cancer (TNBC) is a distinct pathological subtype defined by the absence of estrogen receptor (ER), progesterone recep...
Read more
Advanced Models of Human Muscle Differentiation: 3D Cultures, Org...
Introduction The organization and function of living muscle tissues cannot be fully recapitulated by typical two-dimensional (2D) culture me...
Read more

get in touch

Get the best insights about Cherry Biotech by Email Let’s stay in touch!
As part of our commercial prospecting, we may need to process your personal data. For more information, please consult our Privacy Policy
×

Our Associated Solutions

Banner

Need to switch temperature in 10 seconds (5-45° range) for your experiments?

Discover CherryTemp
×

Contact Us!

Aside

We're happy to answer any questions you may have. Reach out to our team for assistance.

Contact Now